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Electron correlation is one long standing problem of computational electronic
structure theory. Even more, with the advent of the density functional theory and, in
particular, with its Kohn–Sham implementation, the separation of the non-dynami-
cal and dynamical components of the electron correlation has became an unavoidable
requirement towards construction of reliable exchange-correlation functionals. In this
paper, we address the analysis of the separation of the non-dynamical and dynamical
electron correlation effects from two complementary viewpoints, namely, analysis of the
correlation energy components and the analysis of the electron-pair density. The former
approach will make use of the local-scaling transformations and the latter will be based
on the study of intracule and extracule densities.

KEY WORDS: intracule, electron correlation, local scaling, Density Functional Theory,
electron pair density

1. Introduction

The significance of electron correlation can hardly be overlooked in current
quantum chemical studies. Although it has become customary for the practical user
to include a post Hartree–Fock (HF) procedure to account for improved energy
results in structure and reactivity studies, the harmful of such practices has been
warned by several theoretical studies. This problem may become even more serious
due to the complex structure of the electron–electron interaction, a phenomenon that
is intuitively grasped by a layman but that still hides its own secrets.

Consider the usual HF level as a reference state. It is a common practice
to consider the HF wave function as both a good first order approximation
to the exact ground state and an appropriate uncorrelated reference state for
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highly correlated methods [1]. Although this fact is widely recognized to hold
for most systems at equilibrium and devoid of any near-degeneracy effects, when
the system presents a pseudo-degenerate single-determinant wave function the
usual energy definition of electron correlation advanced by Löwdin [2] does not
arise from purely short-range electron–electron interactions. When the HF ref-
erence state fails to afford a reasonable physical description of the system, the
straight approach is to include all those degenerate (or near-degenerate) states
in a self-consistent field (SCF) procedure as put forward by Ruedenberg and
Roos [3,4] (CAS-SCF, complete active space SCF). As a consequence, the usual
energy-based definition of electron correlation, counted from the HF state, can
be regarded as a quantity composed from a system-specific, non-dynamical con-
tribution and a non-specific, and hence, in a sense, universal dynamical contri-
bution [5]. The non-dynamical correlation component is thought to arise from
the long-range correlation effects resulting from the strong interaction between
the HF state and the closely lying pseudo-degenerate states and can be loosely
defined by

End = ECASSCF − EHF. (1)

The shortcoming of this definition is that an uncontrollable number and
type of virtual orbitals are introduced in the CAS-SCF method so that the
resulting non-dynamical correlation energy is contaminated by the dynamical
correlation energy component [6]. The effect is also present in current formu-
lations of single-reference density functional theory and has been studied as
part of the problem of fractionally occupied orbitals [7] and the broken sym-
metry problem [8]. Recently, the problem of selecting the appropriate set of vir-
tual orbitals for combining multireference wave functions and density functional
methods has been addressed by several authors [9]. Other alternatives to estimate
properly the importance of the non-dynamical effects include the consideration
of a functional for the non-dynamical correlation energy [10], the partition of the
electron–electron operator [11], and the partition of electron correlation energy
[12,13].

In addition to the energy-based studies on electron correlation it is useful to
resort to the analysis of the electron-pair distributions in order to afford quan-
titative measures of the long and short range effects of electron–electron inter-
actions in a given system. In particular the electron intracule I (u) and extracule
E(R) densities characterize the distribution of a pair of electrons in atoms and
molecules [14,15] and represent the probability density functions for the relative
vector ri − rj and center-of-mass vector (ri + rj )/ 2 to be u and R, respectively.

I (u) =
∫

�(r1, r2)δ(u − r1 + r2)dr1 dr2, (2)

E(R) =
∫

�(r1, r2)δ

(
R − r1 + r2

2

)
dr1 dr2, (3)
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where �(r1, r2) = N(N − 1)
∫ |�(r1, r2, . . . , rN)|2dr3 · · · drN is the spin-traced

two-body density matrix and, δ stands for the Dirac’s delta function. The
two-electron character of these quantities combined with the low dimensional-
ity have inspired the work of several groups in order to unveil the nature of
electron–electron interactions in a elegant and intelligible manner [16]. These
quantities have been analyzed at the HF level in terms of their topological prop-
erties [17] as well as in terms of the topology of their Laplacians for atoms [18]
and for molecules [19]. When they are evaluated at a higher level of theory, they
provide valuable information about the electron correlation present in atomic
and molecular systems. In doing so, the nature of the Coulomb hole can be
revealed [20,21], the effect of molecular electron correlation on anisotropic E(R)

and I (u) can be displayed [22] and an illuminating topological picture of the
detailed electron–electron Coulomb interaction can be provided [23,24]. Elec-
tron-pair densities have been used as starting entities for the design and inter-
pretation of current density functionals [25,26] and for the calculation of exact
exchange-correlation potentials [27].

These quantities have been also analyzed in relation to the importance of
radial and angular correlation for two-electron systems [28]. Remarkable prop-
erties have been formulated on the upper bound constraints for HF and exact
intracule densities at u = 0 [29,30]. Other derived quantities such as the elec-
tron–electron counterbalance density d(0) and the electron coalescence density
h(0) which are the spherically averaged densities for E(R) and I (u), respectively,
evaluated at origin, provide further insights into the nature of electron correla-
tion [28,31].

In this paper, we address the analysis of electron correlation from the ener-
getic point of view and from the electron-pair distribution approach. The first
approach will make use of the local-scaling transformations and the second will
be based on the study of intracule and extracule densities.

2. Local-scaling transformations and a decomposition scheme
for the correlation energy

A local-scaling transformation is a generalization of the well-known
uniform-scaling transformations f(r) = λr, where the scaling parameter λ is just
a constant. In the case of local-scaling transformations, λ is a function of r that
modifies the position vector r according to

f(r) = λ(r)r = (λ(r)x, λ(r)y, λ(r)z). (4)

Consider applying a local-scaling transformation to an arbitrary N -electron wave
function, �(r1, r2, . . . , rN). The resulting new wave function �(r1, r2, . . . , rN) is
given by
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�(r1, r2, . . . , rN) = f̂ · · · f̂
(N-t imes)

�(r1, r2, . . . , rN)

=
N∏

i=1

[J (fi , ri)]
1
2 �(f1, f2, . . . , fN), (5)

where the transformation operator f̂ denotes the effect of the local-scaling trans-
formation on the function �, and the Jacobian of the transformation, J (fi , ri),
is given by the relation

dfi = J (fi , ri) dri , (6)

and is determined by the explicit form of λ(r). Notice that the transformed wave
function � conserves the normalization and that the one-electron densities, ρ�

and ρ�, associated to the generating wave function � and the target wave func-
tion �, respectively, are related by

ρ�(r) = J (f, r)ρ�(f), (7)

a result obtained simply by applying equations (5) and (6) and the usual defini-
tion

ρ�(r) =
∫

|�(r1, r2, . . . , rN)|2dr2 dr3, . . . , drN. (8)

So far the explicit form of scaling function λ(r) has not been given and a par-
ticular choice is to define it as follows

λ(r) = f (r)
r

, (9)

so that the Jacobian of the transformation is given by

J (λ(r)r; r) =




∂λ(r)x
∂x

∂λ(r)y
∂x

∂λ(r)z
∂x

∂λ(r)x
∂y

∂λ(r)y
∂y

∂λ(r)z
∂y

∂λ(r)x
∂z

∂λ(r)y
∂z

∂λ(r)z
∂z




= 1
r3

r · ∇rf
3(r). (10)

Substituting equation (10) into equation (7) and using polar coordinates, r =
(r, θ, φ), we obtain a first order differential equation for the transformation func-
tion f (r),

df (r, θ, ϕ)

dr
= r2

f 2(r, θ, ϕ)

ρ�(r, θ, ϕ)

ρϕ

(
f (r, θ, ϕ), θ, ϕ

) . (11)
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For the case of spherically-symmetric or spherically-averaged densities, the local-
scaling function λ(r, θ, φ) reduces to λ(r) and, hence, equation (11) is simplified
to

df (r)

dr
= r2

f 2(r)

ρ�(r)

ρ�

(
f (r)

) . (12)

It is clear that if the given initial density ρ� is kept fixed, for instance, it is
set to be the HF density, and the final density is chosen from a given set, say,
of correlated electron densities {ρCISD, ρFCI, ρMCSCF, . . . }, then different solutions
of equation (12), namely, {fCISD(r), fFCI(r), fMCSCF(r), . . . }, will be found. This
way, the transformed coordinate f(r) is determined from the final density ρ(r)

and, by means of equation (5), the transformed wave function can be evaluated.
In fact, from equations (5) and (6), it can be shown that the transformed wave
function yields the final electron density by quadrature

∫
|�(r1, r2, . . . , rN)|2dr2dr3, . . . , drN

=
∫ N∏

i=1

[J (fi , ri)] |�(f1, f2, . . . , fN)|2dr2dr3, . . . , drN

= ρ�(r1)

ρ�(f1)

∫ N∏
i=2

[
ρ�(ri)

ρ�(fi)

]
|�(f1, f2, . . . , fN)|2

N∏
i=2

[
ρ�(fi)
ρ�(ri)

]
df2df3, . . . , dfN

= ρ�(r1)

ρ�(f1)

∫
|�(f1, f2, . . . , fN)|2df2df3, . . . , dfN = ρ�(r). (13)

In figure 1 a schematic representation of the local-scaling transformation is
shown: right-hand side arrows determine f (r) by equation (12) from the given
densities, and the left hand arrows apply the found transformation function on
the initial wave function to yield a transformed wave function that yields the
final density, from which the transformation function was found. This is the cen-
tral point of the local-scaling transformations: to produce a new wave function
that yields a target electron density from a preceding (generating) wave function.
This fact can be further exploited in the framework of density functional the-
ory and a constructive procedure to design density functionals of high accuracy
has been proposed [32,33]. In the following section we will denote the total ener-
gies obtained from a generating wave function and its associated final density by
explicitly writing them down as functionals of these entities. Thus, the functional
E[�HF, ρFCI] stands for the energy obtained from a generating HF wave function
such that the locally scaled, transformed HF wave function yields the final full
configuration-interaction (FCI) density.
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Figure 1. Schematic representation of local-scaling transformations of a given wave function �g :
r.h.s. arrows represent operators f̂ determined by the two electron densities (ρg and ρf ). The corre-
sponding unitary operator Uf acts on the wave function �g (l.h.s. arrows) yielding a transformed

wave function �f associated to the chosen ρf .

2.1. A decomposition scheme for the correlation energy

Regarding the analysis of electron correlation energy, local-scaling transfor-
mations can readily be used as a unambiguous criterion to assess the relative
importance of non-dynamical correlation in quantum systems [13]. The usual
quantum mechanical definition of electron correlation energy is

Ec = Eexact − EHF, (14)

which can be rewritten as the density-functional expression

Ec = E[�exact, ρexact] − E[�HF, ρHF]. (15)

Notice that this energy difference is obtained from energies associated to both
different wave functions and different electron densities. As a consequence, the
electron correlation energy cannot be formulated as a functional of the den-
sity, in general. Recall that the alternative density-functional electron correlation
defined by

EDFT
c = E[�exact, ρexact] − Ex [�KS, ρexact], (16)

where �KS is the single-determinant Kohn–Sham wave function and the sub-
script x indicates that the energy Ex only includes the exact exchange energy
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evaluated with the Kohn–Sham orbitals, φi(r),

−1
2

N∑
i,j=1

spin j||spin i

∫
φ∗

i (r)φi(r′)φ∗
j (r

′)φj (r)∣∣r − r′∣∣ dr dr′ (17)

can certainly be regarded as a density functional. The relationship between Ec

and EDFT
c will be established below.

Now we can proceed to propose a energy decomposition that will reveal
the dynamical and non-dynamical character of the quantum-mechanical electron
correlation energy. Figure 2 depicts the proposed partitioning scheme where the
notation E[�, ρ] means the energy evaluated with a wave function � that yields
density ρ. It is clear that the differences

EI
d = E[�exact, ρHF] − E[�HF, ρHF] (18)

and

EI
nd = E[�exact, ρexact] − E[�exact, ρHF], (19)

which represents decomposition along Path I (figure 2), will sum up to the whole
electron correlation energy. The decomposition along Path II will give

EII
d = E[�exact, ρexact] − E[�HF, ρexact] (20)

and

EII
nd = E[�HF, ρexact] − E[�HF, ρHF]. (21)

The leading feature of this partitioning scheme is that the non-dynamical com-
ponent along both paths I and II arise from density differences whereas the
dynamical component results from wave function differences. This idea was first

Figure 2. Quantum mechanical correlation energy, Ec, decomposition into dynamical and
non-dynamical components along path I and path II.
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advanced by Cioslowski [12] within the framework of the so-called density-driven
formulation of density functional theory [34,35]. Next section will explain in
more detail the physical meaning of the proposed scheme.

This energy decomposition allows to establish a straightforward relationship
between other energy differences reported in the Literature. Thus, it follows that
the non-dynamical component on path II, is

EII
nd = � + �Ec, (22)

where the quantity �, introduced by Gross et al. [36], is

� = Ex [�KS, ρexact] − E[�HF, ρHF] (23)

and �Ec, analyzed by Görling and Ernzerhof [37], is

�Ec = E[�HF, ρexact] − Ex [�KS, ρexact]. (24)

From these differences, we conclude that the density-functional correlation
energy is related to the quantum-mechanical correlation energy through the
difference �,

EDFT
c = Ec − � (25)

or, by using the difference �Ec,

EDFT
c = EII

d + �Ec, (26)

which partially endorses the general view of considering EDFT
c as composed from

purely dynamical effects. Notice that this equation serves as a definition of �Ec

as the non-dynamical component of the density-functional correlation energy.

2.2. Physical interpretation of dynamical and non-dynamical correlation energy
decomposition

The energy functional E[�ρ ] = E[�, ρ] can be expressed as a functional
of three quantities: the density ρ, the locally-scaled 1-matrix D1

ρ and the locally-
scaled “diagonal” 2-matrix D2

ρ , respectively. The energy, hence, becomes:

E[�,ρ]= 1
2

∫
dr∇r∇r′D1

ρ(r,r
′)
∣∣
r′=r +

∫
drρ(r)v(r)+

∫
dr1dr2

D2
ρ(r1,r2)

|r1 −r2| . (27)

The locally-scaled matrices D1
ρ and D2

ρ depend on the density ρ as well as on the
initial untransformed wave function �. To make this dependence explicit we use
the following notation: D1

ρ(r1, r2) ≡ D1
�([ρ], r1, r2) and D2

ρ(r1, r2)≡D2
�([ρ], r1, r2).
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These transformed matrices can be written also in terms of the scaling vector f
as follows:

D1
�([ρ], r, r′) =

√
ρ(r)ρ(r′)

ρ�(f)ρ�(f ′)
D1

�(f, f ′) (28)

and

D2
�([ρ], r1, r2; r1, r2) = ρ(r1)ρ(r2)

ρ�(f1)ρ�(f2)
D2

�(f1, f2). (29)

We now rewrite the 1-matrix D1
� in equation (28) in terms of its local and

non-local components,

D1
�(f, f ′) = ρ

1/2
� (f)ρ1/2

� (f ′)D̃1
�(f, f ′). (30)

Similarly, we rewrite D2
� in equation (29) in terms of its correlation factor:

D2
�(f1, f2) = ρ�(f1)ρ�(f2)

[
1 + F

XC
� (f1, f2)

]
. (31)

Introducing equations (30) and (31) into equations (28) and (29), respectively,
and using these results in equation (27), we obtain the following energy func-
tional:

E[�, ρ] = 1
8

∫
d r

[∇ρ(r)]2

ρ(r)
+ 1

2

∫
d r ρ(r) ∇r∇r′D̃1

�(f, f ′) +
∫

d r ρ(r)v(r)

+
∫

d r1d r2
ρ(r1)ρ(r2)(1 + F

XC
� (f1, f2))

|r1 − r2| . (32)

Using equation (32), the dynamical component EII
d along path II becomes

(here f ≡ f(r), �HF ≡ HF and �exact ≡ ex):

EII
d = E[�ex, ρex] − E[�HF, ρex]

= 1
2

∫
d r ρex(r) ∇r∇r′

[
D̃1

ex(r, r′) − D̃1
HF(f, f ′)

] ∣∣∣
r′=r

+
∫

d r1d r2
ρex(r1) ρex(r2)

|r1 − r2| × [FXC
ex (r1, r2) − F

X
HF(f1, f2)], (33)

where the terms that depend on the one-particle density cancel out. An analo-
gous expression for EI

d readily follows replacing ρex by ρHF and using the corre-
sponding transformed density matrices.
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The energy for the non-dynamical component EII
nd is

EII
nd = E[�HF, ρex] − E[�HF, ρHF]

= 1
8

∫
d r

[
[∇ρex(r)]2

ρex(r)
− [∇ρHF(r)]2

ρHF(r)

]

+1
2

∫
d r

[
ρex(r) ∇r∇r′ D̃1

HF(f, f ′) − ρHF(r) ∇r∇r′ D̃1
HF(r, r′)

] ∣∣∣
r′=r

+
∫

d r [ρex(r) − ρHF(r)] v(r)

+
∫

d r1d r2
ρex(r1)ρex(r2) − ρHF(r1)ρHF(r2)

|r1 − r2|
+

∫
d r1d r2

ρex(r1)ρex(r2)F
X
HF(f1, f2) − ρHF(r1)ρHF(r2)F

X
HF(r1, r2)

|r1 − r2| . (34)

Now, according to the matrix formalism and its statistical interpretation within
probability theory [38,39], it is well known that for a quantum mechanical sys-
tem described by �ρ the conditional probability of finding an electron at point
r1 when one is known to be at r2 (for simplicity we disregard spin) is given by

ρcond(r2|r1) = D2
�([ρ]; r1, r2)

ρ(r1)
, (35)

which can be rewritten as

ρcond(r2|r1) = ρ(r2) + ρh
�(r2|r1), (36)

where the displaced charge (or hole) is defined as [39]

ρh
�(r2|r1) = ρ(r2)F

XC
� (f1, f2). (37)

Thus, we see that equation (33) can be written as

EII
d = 1

2

∫
d r ρex(r) ∇r∇r′

[
D̃1

ex(r, r′) − D̃1
HF(f, f ′)

] |r′=r

+
∫

d r1 d r2
ρex(r1) [ρh

ex(r2|r1) − ρh
HF(r2|r1)]

|r1 − r2| . (38)

It is clear from equation (38) that EII
d involves the change in displaced charge

(or the change in Coulomb hole) produced by going from �HF
ρex

to �ex. In fact,
the dynamical component appears solely as the difference between the exchange
term of the HF wave function and the exchange-correlation term of the exact
wave function, which is a de facto definition of correlation energy when one tries
to describe correctly the Coulomb hole. The physical content of this difference
becomes clear when the conditional density is interpreted as the distribution of
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N − 1 electrons around a single one: in the space close to an electron the differ-
ence in distributions is due to the absence of correlation in the HF reference
state.

On the other hand, the Coulomb hole is not involved in non-dynamical
correlation. Thus, in equation (34) we see that there occurs a change in the dis-
placed charge due to the change in density. For densities which are very simi-
lar, the non-dynamical component should be small. However, when the densities
change quite drastically, as in a molecular dissociation process, this component
will become relatively important.

2.3. Dynamical and non-dynamical correlation energies for the He and Be
isoelectronic series

2.3.1. He isoelectronic series
The proposed partitioning scheme has been applied to the analysis of the

quantum-mechanical and density-functional correlation energy of the He iso-
electronic series [13] and Beryllium isoelectronic series [40]. In this Section, the
results for the He isoelectronic systems will be summarized.

In table 1 we list the total correlation energy values and its components for
the helium isoelectronic series at the level of a Full CI wave function composed
from orbitals [9s 8p 8d 8f 8g 8h 9i]. For Z � 2, we observe that the absolute val-
ues of EI

nd, and EII
nd are exactly the same. This fact can be explained resorting

to expression for End given by equation (34) where the main contribution comes
from terms that depend on the density differences between ρHF and ρexact are
involved, whereas the differences between the exchange and exchange-correlation
factors for the generating and the transformed wave functions are assumed to be
negligible.

In addition, it is also observed that as Z increases they become smaller
and due to the fact that Ec remains constant they represent a negligible fraction
of the total correlation energy. This implies that with increasing Z the correla-
tion energy for a two-electron atom arises almost entirely from dynamical effects.

Table 1
Dynamical and non-dynamical correlation energy
components for the He isoelectronic series

(µ-Hartrees).

Z Ec EI
d EI

nd EII
d EII

nd

2 −41963.4 −41899.4 −64.0 −42026.7 63.2
3 −43389.4 −43372.2 −17.2 −43406.6 17.2
4 −44134.1 −44126.4 −7.7 −44141.8 7.7
5 −44580.6 −44576.3 −4.4 −44585.0 4.4
6 −44911.9 −44909.2 −2.8 −44914.7 2.8
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Also, the quadratical decrease of the total End with increasing atomic number Z
follows a linear pattern to a high degree of accuracy described by a relation of
the form

End = a

Z2
+ c. (39)

In table 2 a comparison between the quantum mechanical and density-func-
tional correlation energies for the He series is made. For this purpose we list, in
addition to Ec, the corresponding values for EDFT

c and �. For the two-electron
atoms in the singlet spin state, �Ec (equation (24)) is exactly zero due to the
fact that the one-particle wave functions entering either in the HF or the Kohn–
Sham determinant are the same and depend only on the exact density. As a
consequence, we have EII

d ≡ EDFT
c (see equation (26)) namely, that the density-

functional correlation energy is entirely composed from the dynamical contri-
bution defined along path II. In addition, we observe that the non-dynamical
component EII

nd is equal to the correction � introduced by Gross et al. [36] (see
equation (23)).

2.3.2. Be isoelectronic series
The Beryllium isoelectronic sequence presents a pseudo-degeneracy in the

2s2–2p2 atomic levels which increases together with the charge Z in the
sequence [41]. The consequence is that the HF state is no longer the only (sin-
gle) reference state, instead, the configuration 1s2 2p2 should also be taken in
account. This, in turn, gives rises to an appreciable long-range correlation effect
created by placing electron in the orbitals 2s and 2p which have different regions
in physical space. In this section, we present the results obtained by applying the
partitioning scheme put forward in first section (for further details see Ref. [40]).

The analysis was carried out using CI wave functions arising from a
[7s 4p 3d 2f 1g] orbital set optimized for an MCSCF wave function �140 con-
taining 140 configurations (30 for the K shell, 30 for the L shell and 80 for the
intershell region). The total correlation energy recovered by this wave function

Table 2
Comparison of quantum mechanical and density
functional correlation energies for the He isoelec-
tronic series (µ-Hartrees). �Ec is exactly zero for the

entire series.

Z Ec EDFT
c � �( Ref. [36])

2 −41963.4 −42026.7 63.2 63
3 −43389.4 −43406.6 17.2
4 −44134.1 −44141.8 7.7 7
5 −44580.6 −44585.0 4.4
6 −44911.9 −44914.7 2.8
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represents 97% of the estimated nonrelativistic limit for the beryllium atom [42],
and 95–96% for the other members of the series [43,44].

In table 3 we give the obtained values for the dynamical and non-dynami-
cal determined either by paths I or II. Notice that here, in opposition with the
pattern found for the Helium series, the non-dynamical component Ec[nd I] is
clearly proportional to the nuclear charge. This behavior is comparable to that
observed for the total correlation energy for the Be series [41]. Note also that
the numerical values for the components Ec[nd I] and Ec[nd II] do not coincide
here. Clearly, as the near-degeneracy becomes notably stronger with the increase
of atomic number, the ratio of the non-dynamical component to the total corre-
lation energy increases up to more than 10% for the N3+ ion. This fact shows
the inadequacy of the HF state as a first approximation to the exact state for
these systems.

The decomposition of the residual correlation energy recovered by the FCI
wave function taking the multireference wave function �R = c11s22s2 + c21s22p2

as the reference wave function is shown in table 4. We may conclude, firstly, that
the residual correlation energy E′

c = Eexact − ER is independent of Z. This way.
it resembles the behavior already observed in the He series. Secondly, that the
magnitude of the non-dynamical component in relation to the total correlation
energy is quite small and finally, in perfect analogy with the results for the He
sequence, that in this partition a perfect coincidence between the non-dynamical

Table 3
Dynamical and non-dynamical correlation energy
components for the Be isoelectronic series

(µ-Hartrees).

Z Ec EI
d EI

nd EII
d EII

nd

4 −91 272 −88 814 −2 458 −93 846 2 574
5 −107 776 −103 704 −4 072 −112 070 4 294
6 −121 739 −115 120 −6 619 −128 867 7 128
7 −134 946 −124 477 −10 472 −146 031 11 082

Table 4
Analysis of the residual correlation energy,
E′

c = Eexact − ER , into the dynamical and non-
dynamical components for the Be isoelectronic series

(µ-Hartrees).

Z E′
c EI

d EI
nd EII

d EII
nd

4 −47 450 −47 393 −57 −47 506 56
5 −48 973 −48 953 −20 −48 994 21
6 −49 278 −49 263 −15 −49 293 15
7 −49 460 −49 451 −9 −48 819 9
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parts determined by paths I and II is observed. Again, in this case, we may
invoke as an explanation equation (34), with the proviso that in this case ρR is
quite close to ρFCI. We observe that it follows the same inverse law previously
found for the He sequence. This observation, plus the fact that the correlation
energy E′

c does not depend on the atomic number, confirm the similarities of the
correlation energy defined by the �R state for the Be series and the conventional
correlation energy for the He sequence.

Table 5 lists the results of the analysis of the density-functional correla-
tion energy found for the beryllium series. The Kohn–Sham orbitals were deter-
mined by the local-scaling scheme of kinetic-energy minimization proposed by
Ludeña et al. [45]. The values of the dynamical correlation energy component
EII

d are also reported. We observe a great similarity between these values and
those of EDFT

c . In addition, we list the values of � (equation (23)) and �Ec

(equation (24)) The increase of both these values with Z follows the same pat-
tern as that observed for EI

nd (the non-dynamical correlation calculated taking
�HF as the reference wave function; see table 3. This pattern is reversed for the
non-dynamical correlation energy EI

nd as calculated with respect to the reference
wave function �R (table 4). Here, these values are lowered by two orders of mag-
nitude. Moreover, as stated previously, the residual correlation energy E′

c and
EI

d (cf. table 4) show a weak dependence on Z repeating the behavior already
observed for the He isoelectronic series where the correlation energy defined with
respect to a HF state presents a pure dynamical character. These facts clearly
suggests that an alternative Kohn–Sham formalism, based on a multireference
state may be more adequate for handling the correlation problem than the pres-
ent one based on a single Kohn–Sham determinant.

3. Electron-pair density functions as fingerprints of long- and short-range
effects

The features of the intracule and extracule densities provide insights into
the details of electron–electron interactions. Although the the topology of both
I (u) and E(R) are considerably more complex than that of the more familiar

Table 5
Comparison of the energy differences obtained for

the Be sequence (µ-hartrees).

Z Ec EDFT
c EII

d � �Ec

4 −91 272 −92 999 −93 846 1 727 847
5 −107 776 −110 386 −112 070 2 610 1 684
6 −121 739 −125 576 −128 867 3 837 3 291
7 −134 946 −139 868 −146 031 4 922 6 163
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electron density ρ(r), it has become possible to sort out different classes of
electron–electron interactions and finding the regions of the intracular or extra-
cular space to which they contribute [17,19,46–48]. it also allows the introduc-
tion of the concept of the correlation cage [23], as the domain in the space of
interelectronic distance vectors contained within the sphere on whose surface the
intracule density is locally maximum and encapsulates the electron–electron coa-
lescence point. The shape and size of the correlation cage has been found to be
entirely determined by the topological properties of the intracule density [23,24],
thus avoiding any references to ill-defined uncorrelated quantities.

3.1. Electron–electron counterbalance density as a criterion for identification
of non-dynamical effects

Following this line we propose here the use of the electron–electron coun-
terbalance density as an indicator of non-dynamical correlation effects (see also
Ref. [49]). The electron–electron counterbalance density, d(0), is a special case of
the extracule density E(R), i.e., it is the value at the origin R = 0. For atomic
systems, this probability density represents the probability of finding any two
electrons at opposite sides with respect to the nucleus [30,31,50,51]. In partic-
ular, it follows that in atoms long range effects of the electron correlation can
be measured through the direct evaluation of this probability density, for it is
clear that spatial separation between a pair of electrons introduced by correlating
orbitals will be readily reflected in d(0). Table 6 lists the set of wave functions
used to explore the virtual atomic orbital space for the Be series. The orbitals in
braces describe the configuration state functions (CSF) that enter in the MCSCF
procedure. The FCI level corresponds to a wave function that includes correlat-
ing functions of angular symmetry up to f -type orbitals. It can be seen that only
L-shell correlation is introduced in every wave function reflecting the expected
fact [41] that near-degeneracy effects are properly account for by correlating
only the 2s2 electrons. Main entries I, II, and III corresponds to wave func-
tions including only one s, p, or d-type orbitals. Entries labeled by lowercase let-
ters conform to further correlating orbitals of different angular symmetry within
each main entry. Since correlation contributions of both short and long range
character are introduced in each wave function the particular values of d(0) for
each wave function are affected in different ways. Table 6 shows the calculated
counterbalance density d(0) values for this set of wave functions. It can be seen
that the effect of s-type correlation in going from the HF state to the wave
function I and Ia is to lower the HF value. Hence, the introduced radial
correlation, interpreted as a pushing one electron from the other, decreases
the probability of placing two electrons at mirror positions. Introduction of
explicit angular p correlation as in the sequence HF → II → IIa rises the
d(0) values. Adding extra d-type functions (Ic and IIb) has a lowering effect on
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Table 6
The electron–electron counterbalance density ratio with respect to wave function IIa, for the Be

isoelectronic series at the correlated wave functions.

WF Be B+ C2+ N3+ O4+ F5+ Ne6+

HF 1s22s2 0.99726 0.99543 0.99464 0.99409 0.99358 0.99328 0.99308
I 1s2{2s, 3s}2 0.99687 0.95156 0.95891 0.96391 0.96754 0.97032 0.97263
Ia 1s2{2s, 3s, 4s}2 0.99674 0.95129 0.95867 0.96369 0.96735 0.97015 0.97248
Ib 1s2{2s, 3s, 2p}2 0.99967 0.99960 0.99962 0.99962 0.97559 0.99964 0.99967
Ic 1s2{2s, 3s, 3d}2 0.99667 0.99439 0.99398 0.99300 0.99258 0.99231 0.99229
II 1s2{2s, 2p}2 0.99995 0.99996 0.99999 0.99999 0.99998 0.99998 0.99999
IIa 1s2{2s, 2p, 3p}2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
IIb 1s2{2s, 2p, 3d}2 0.99975 0.99960 0.99966 0.99963 0.99966 0.99964 0.99978
III 1s2{2s, 3d}2 0.99688 0.99478 0.99404 0.99348 0.99306 0.99278 0.99274
IV 1s2{2s, 3s, 2p, 3d}2 0.99949 0.99924 0.99926 0.99926 0.99929 0.99929 0.99946
FCI 0.93717 0.95223 0.96162 0.96779 0.97221 0.97537 0.97830

counterbalance density values with respect to the main wave functions I and II,
so that this type of correlation is similar to the one introduced by s orbitals.
This is further confirmed by comparison of the values yielded by wave func-
tions I and III. Note also that the wave function IV, although including corre-
lation from every sort of angular symmetry used here, does not show a larger
d(0) value than the “best” entry represented by wave function IIa. All these
results are valid for each member of the isoelectronic sequence. In general, it can
be concluded that angular correlation, represented by high angular momentum
correlating orbitals, has a long range (non-dynamical) character whereas radial
correlation exhibits short range (dynamical) nature due to its low angular
momentum and intrashell orbitals. Thus, a maximum d(0) value can be used as a
criterion to select a wave function that would include the maximum non-dynam-
ical correlation.

This criterion can also be used to understand the non-dynamical cor-
relation effects arising from the dissociation process of the H2 molecule. In
the region close to the equilibrium distance, this system can be regarded as
normal, i.e., non-dynamical effects are negligible. As the bond is stretched,
proper dissociation must be described with a multiconfigurational wave-func-
tion that includes the rising non-dynamical effects. Thus, it is expected that
the electron counterbalance density should be very sensitive to the molecular
dissociation.

Figure 3 depicts the values of d(0) calculated from the HF, two-orbital CSF
(I), five-orbital CSF (II) and FCI wave functions using the 6-311G** basis set.
It is observed that, unlike the d(0) values for the HF state, the correlated wave
functions present a d(0) minimum at R = 2.8 a.u. This point corresponds to a
perfect cylindrical charge distribution about the bond axis such that the mirror
positions contribute the less to d(0). The rising of d(0) with R is explained by
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Figure 3. The electron–electron counterbalance densities, d(0), versus the internuclear distance R

for the H2 molecule (in a.u.). The wave functions were evaluated with the 6-311G** basis set. The
equilibrium distance Re=1.4 a.u. is indicated on the R-axis.

the growing charge concentration in the vicinity of each atom H that eventually
enhances the probability of finding a pair of electrons at opposite sides of the
symmetry center. Notice that the limiting value will remain constant starting
from R = 5 a.u.

In figure 3 two ranges of R can be set apart. The first region extending from
0 to the equilibrium distance Re = 1.4 a.u. comprises the range where the mole-
cule behaves as a normal system and it is expected that the HF state is a good
approximation to the exact wave function. This fact is evidenced by the coinci-
dence among all values for the electron counterbalance density of the four wave
functions. Thus, up to Re, the HF state is the simplest wave function with proper
physical content in terms of the counterbalance density. The second region, rang-
ing from Re up to R = ∞, should be associated with the rising of near-degener-
acy effects. In this region, the values for the counterbalance density for the three
correlated wave functions are almost identical, whereas the HF values are clearly
far from the correct trend. In this region, the wave function I is the simplest state
to be chosen as the one giving the correct approximation to the electron coun-
terbalance. The inset graph of figure 3 shows the small differences between the
d(0) values in the range comprising the d(0) minimum.

Thus, the two-orbital CSF wave function should be considered as the
simplest wave function that accounts for the non-dynamical effects present
in this region. Notice that going to a higher level of calculation (FCI wave
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function tends to lower the values of d(0). This effect resembles the previous
behavior found for the Be isoelectronic series [49], where it has been demon-
strated that using highly correlated wave functions lowers the values of d(0)

(cf. table 6). In the tail region beginning at R = 5.0 a.u. and extending to
infinity, the values of d(0) are constant and converge to the value 1/π for
all of the correlated wave functions in the set. This result agrees with the
analytical value obtained for the system composed of two separated hydrogen
atoms. For HF wave function the limiting value of d(0) is 0.1 which compares
well with the values for a physical system that mixes spurious H− ion–proton
configurations.

Figure 4 shows the non-dynamical (II −IHF) and dynamical (IFCI −II) Cou-
lomb electron correlation holes, along with the total Coulomb hole (IFCI − IHF),
for the hydrogen molecule at a nuclear separation of R = 1.4 a.u. It is observed
that the non-dynamical electron correlation effect dominates the Coulomb hole
and, the dynamical correlation effect is substantially smaller. Notice also, that
the shape of the non-dynamical hole parallels that of the total Coulomb hole,
while an oscillatory behavior is seen for the dynamical electron correlation hole.
The latter should be ascribed to the proper electron–electron interactions and
has a universal sense. However, the large piece of the electron correlation, namely
the non-dynamical contribution, is system dependent and reflects the incorrect-
ness of the HF wave function as a physically sound approximation to the exact

0 1 2 3 4 5 6 7
u

0

0.05

0.1

I(
u)

IFCI HF

II HF

IFCI I

Figure 4. The electron correlation holes for the wave function I of the H2 molecule (in a.u.) at
R=1.4 a.u.
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quantum wave function of the system. The distinct origin of these two kinds of
electron correlation deserve a differentiated treatment.

4. Conclusions

Electron correlation is quantity composed from a system specific,
non-dynamical contribution and a non-specific, in a sense universal, dynamical
contribution. The former arises from the incomplete HF description of the short-
range interelectronic repulsion. The latter, is normally ascribed to the long-range
correlation effects resulting from the strong interactions between the reference
HF state and the closely lying pseudo-degenerate configurations.

The distinct origin of these two kinds of electron correlations deserve a
differentiated treatment. However, a clear separation of the dynamical and the
non-dynamical electron correlation effects is difficult. Thus, the usual Löwdin
definition of the correlation energy carries both effects on the same box. Even
more, the electron correlation energy, defined in this way, is not a functional of
the electron density. This is quite inconvenient for progress in DFT. We have,
however, based on the local-scaling transformation of the electron density, been
able to find a expression for the DFT electron correlation energy, which is a func-
tional of the electron density. Also, the relationship with Löwdin’s electron cor-
relation energy has been established and, a well-defined scheme to separate the
contributions due to the dynamical and non-dynamical effects proposed.

This study has been complemented with the analysis of the extracular and
intracular electron-pair densities. Thus, we have calculated the electron counter-
balance density for a set of wave functions that partially include electron cor-
relation energy. The changes in the electron counterbalance density have been
identified with the non-dynamical (long-range) correlation contributions, since
the behavior evidenced by the electron counterbalance density follows the trend
observed in the balance of radial versus angular momentum correlation intro-
duced by the correlating orbitals. Based on this criterion, a multiconfigurational
wave function has been uniquely defined as such wave function that includes the
maximum non-dynamical correlation. This allows for the explicit calculation of
the dynamical and non-dynamical electron correlation energies and their associ-
ated intracule density distributions differences, i.e., the Coulomb holes. Our cal-
culations demonstrate that the largest contribution to the total Coulomb hole
comes from the non-dynamical electron correlation.

This suggests that there is ample room for improvement in density func-
tional theory for efforts devoted to the proper description of systems with low
lying pseudo-degenerate configurations, which are prototypical of non-dynami-
cal electron correlation. However, we should first learn more about both types of
electron correlation effects, dynamical and non-dynamical, individually, in order
to devise reliable strategies to handle them efficiently.
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